登录方式
方式一:
PC端网页:www.rccrc.cn
输入账号密码登录,可将此网址收藏并保存密码方便下次登录
方式二:
手机端网页:www.rccrc.cn
输入账号密码登录,可将此网址添加至手机桌面并保存密码方便下次登录
方式三:
【重症肺言】微信公众号
输入账号密码登录
注:账号具有唯一性,即同一个账号不能在两个地方同时登录。
作者:蒋进军
1997年N Engl J Med 杂志发表的文章显示,尽管布洛芬可以减少脓毒症患者发热、心动过速、耗氧量和乳酸性酸中毒的发生,但其并不能预防休克或ARDS的发生,也不能提高生存率。
2019年国内学者在Crit Care Med 杂志发表的研究显示中药注射液治疗重症社区获得性肺炎能够降低病死率[40]。2020年钟南山院士牵头开展了一项血必净注射液治疗重症Covid-19的多中心前瞻性队列研究,但由于当时武汉疫情迅速得到控制,来不及有较大的样本量入组。从有限的资料来看,血必净注射液能够明显改善重症新冠肺炎患者的肺炎严重指数(PSI)风险评级和临床预后,且未增加药物安全风险[41]。
2010年法国的一项针对早期ARDS治疗的随机对照研究中有30%的ARDS患者实施了俯卧位通气,结果显示肌松剂降低了ARDS患者的病死率[42]。但2019年N Engl J Med 杂志发表的另外一项研究结果却得出相反的结论,该研究显示肌松剂并不能降低ARDS患者病死率。该研究为随机对照研究,并非双盲研究,研究中仅有12%~13%的患者实施了俯卧位通气,对照组在48~96小时甚至超过96小时仍有10%~15%的患者使用肌松剂[43]。所以笔者认为该研究并不能代表标准的ARDS救治,所该研究整体设计并不严格,其结论也有待商榷。
目前比较有代表性的小分子物质是西维来司他钠,一种中性粒细胞弹性蛋白酶抑制剂。2017年日本学者在Respirology 杂志发表了一项大样本回顾性研究,结果显示:西维来司他钠组(n=1997例)患者90天死亡风险下降了17%,并且急性肺损伤/ARDS患者30、60、90天生存率均显著提升。鉴于回顾性研究的证据级别,现阶段也有多中心前瞻性研究在进行中,我们也期待会有更有力的研究结果出现。
我们使用药物救治ASRDS患者的目的是提高其生存率。从现有研究来看,吸入链激酶、吸入肝素可以改善ARDS患者预后,降低死亡率。但目前国内还不能使用,因为超适应证使用,ARDS患者的病死率较高,因此也需要更多的循证医学证据来支撑。对于重度ARDS患者,优先推荐地塞米松;甲强龙似乎不能改善ARDS患者预后,但临床应用比较广泛。希望未来能有关于地塞米松、甲强龙以及对照组的研究来探讨对ARDS患者病死率的影响。IL-6受体拮抗剂对于重度Covid-19患者有一定的治疗价值。此外,巴瑞替尼等JAK抑制剂在Covid-19患者中也显示出了很好的治疗效果。肌松剂、中药制剂以及中性粒细胞弹性蛋白酶抑制剂也都有潜在的发展前景。维生素C和ω-3脂肪酸在ARDS中的相关研究似乎得出了矛盾的结果,未来也需要有更多的研究加以明确。此外,阿司匹林、活化蛋白C、他汀类药物、NO、SP等在ARDS中的应用仍值得探讨。需要注意的是,现有研究提示β2受体激动剂和KGF增加ARDS患者病死率。β2受体激动剂目前很少全身使用,但局部使用仍然常见,其与ICS联用似乎能改善ARDS患者的预后,因此要注意合理使用此类药物。KGF-2在动物实验中的效果较好,未来的临床研究结果值得期待。ARDS的药物治疗,仍然需要有更多的循证医学证据,最终能够降低ARDS患者的病死率,改善预后。
参考文献(向下滑动查看全部文献) [1] Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome[J]. N Engl J Med, 2017, 377(6):562-572. [2] Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome[J]. N Engl J Med, 2002, 346(17):1281-1286. [3] Kor DJ, Carter RE, Park PK, et al. Effect of Aspirin on Development of ARDS in At-Risk Patients Presenting to the Emergency Department: The LIPS-A Randomized Clinical Trial[J]. JAMA, 2016, 315(22):2406-2414. [4] REMAP-CAP Writing Committee for the REMAP-CAP Investigators, Bradbury CA, Lawler PR, et al. Effect of Antiplatelet Therapy on Survival and Organ Support-Free Days in Critically Ill Patients With COVID-19: A Randomized Clinical Trial[J]. JAMA, 2022, 327(13):1247-1259. [5] Liu KD, Levitt J, Zhuo H, et al. Randomized clinical trial of activated protein C for the treatment of acute lung injury[J]. Am J Respir Crit Care Med, 2008, 178(6):618-623. [6] REMAP-CAP Investigators, ACTIV-4a Investigators, ATTACC Investigators, et al. Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19[J]. N Engl J Med, 2021, 385(9):777-789. [7] Dixon B, Schultz MJ, Smith RJ, et al. Nebulized heparin is associated with fewer days of mechanical ventilation in critically ill patients: a randomized controlled trial[J]. Crit Care, 2010, 14(5):R180. [8] Dixon B, Smith RJ, Campbell DJ, et al. Nebulised heparin for patients with or at risk of acute respiratory distress syndrome: a multicentre, randomised, double-blind, placebo-controlled phase 3 trial[J]. Lancet Respir Med, 2021, 9(4):360-372. [9] Abdelaal Ahmed Mahmoud A, Mahmoud HE, Mahran MA, et al. Streptokinase Versus Unfractionated Heparin Nebulization in Patients With Severe Acute Respiratory Distress Syndrome (ARDS): A Randomized Controlled Trial With Observational Controls[J]. J Cardiothorac Vasc Anesth, 2020, 34(2):436-443. [10] Krenn K, Lucas R, Croizé A, et al. Inhaled AP301 for treatment of pulmonary edema in mechanically ventilated patients with acute respiratory distress syndrome: a phase IIa randomized placebo-controlled trial[J]. Crit Care, 2017, 21(1):194. [11] National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Matthay MA, Brower RG, et al. Randomized, placebo-controlled clinical trial of an aerosolized β₂-agonist for treatment of acute lung injury[J]. Am J Respir Crit Care Med, 2011, 184(5):561-568. [12] Gao Smith F, Perkins GD, Gates S, et al. Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial[J]. Lancet, 2012, 379(9812):229-235. [13] Festic E, Carr GE, Cartin-Ceba R, et al. Randomized Clinical Trial of a Combination of an Inhaled Corticosteroid and Beta Agonist in Patients at Risk of Developing the Acute Respiratory Distress Syndrome[J]. Crit Care Med, 2017, 45(5):798-805. [14] Bernard GR, Wheeler AP, Russell JA, et al. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group[J]. N Engl J Med, 1997, 336(13):912-918. [15] Steinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome[J]. N Engl J Med, 2006, 354(16):1671-1684. [16] Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial[J]. Lancet Respir Med, 2020, 8(3):267-276. [17] RECOVERY Colaborative Group, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19 -Preliminary Report[J]. N Engl J Med, 2021, 384(8):693-704. [18] Rosas IO, Bräu N, Waters M, et al. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia[J]. N Engl J Med, 2021, 384(16):1503-1516. [19] REMAP-CAP Investigators, Gordon AC, Mouncey PR, et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19[J]. N Engl J Med, 2023, 389(25):2341-2354. [20] RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial[J]. Lancet, 2021, 397(10285):1637-1645. [21] Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial[J]. Lancet Respir Med, 2021, 9(12):1407-1418. [22] RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis[J]. Lancet, 2022, 400(10349):359-368. [23] Guimarães PO, Quirk D, Furtado RH, et al. Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia[J]. N Engl J Med, 2021, 385(5):406-415. [24] RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis[J]. Lancet, 2022, 400(10349):359-368. [25] McAuley DF, Laffey JG, O'Kane CM, et al. Simvastatin in the acute respiratory distress syndrome[J]. N Engl J Med, 2014, 371(18):1695-703. [26] National Heart, Lung, and Blood Institute ARDS Clinical Trials Network; Truwit JD, Bernard GR, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome[J]. N Engl J Med, 2014, 370(23):2191-2200. [27] INSPIRATION-S Investigators. Atorvastatin versus placebo in patients with covid-19 in intensive care: randomized controlled trial[J]. BMJ, 2022, 7:376:e068407. [28] Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial[J]. JAMA, 2019, 322(13):1261-1270. [29] Lamontagne F, Masse MH, Menard J, et al. Intravenous Vitamin C in Adults with Sepsis in the Intensive Care Unit[J]. N Engl J Med, 2022, 386(25):2387-2398. [30] Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury[J]. JAMA, 2011, 306(14):1574-1581. [31] Chen H, Wang S, Zhao Y, et al. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials[J]. Nutr J, 2018, 17(1):57. [32] Doaei S, Gholami S, Rastgoo S, et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: a randomized clinical trial[J]. J Transl Med, 2021, 19(1):128. [33] Ranieri VM, Pettilä V, Karvonen MK, et al. Effect of Intravenous Interferon β-1a on Death and Days Free From Mechanical Ventilation Among Patients With Moderate to Severe Acute Respiratory Distress Syndrome: A Randomized Clinical Trial[J]. JAMA, 2020, 323(8):725-733. [34] Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults[J]. Cochrane Database Syst Rev, 2016, 2016(6):CD002787. [35] McAuley DF, Cross LM, Hamid U, et al. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial[J]. Lancet Respir Med, 2017, 5(6):484-491. [36] Spragg RG, Lewis JF, Walmrath HD, et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome[J]. N Engl J Med, 2004, 351(9):884-892. [37] Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2):154-162. [38] Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial[J]. Stem Cells Transl Med, 2021, 10(5):660-673. [39] Dilogo IH, Aditianingsih D, Sugiarto A, et al. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial[J]. Stem Cells Transl Med, 2021, 10(9):1279-1287. [40] Song Y, Yao C, Yao Y, et al. XueBiJing Injection Versus Placebo for Critically Ill Patients With Severe Community-Acquired Pneumonia: A Randomized Controlled Trial[J]. Crit Care Med, 2019, 47(9):e735-e743. [41] 刘学松, 宋元林, 关伟杰, 等. 血必净注射液治疗重症新型冠状病毒肺炎的多中心前瞻性队列研究[J]. 中华危重病急救医学, 2021, 33(7):774-778. [42] Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome[J]. N Engl J Med, 2010, 363(12):1107-1116. [43] National Heart, Lung, and Blood Institute PETAL Clinical Trials Network; Moss M, Huang DT, et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome[J]. N Engl J Med, 2019, 380(21):1997-2008. [44] Kido T, Muramatsu K, Yatera K, et al. Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome[J]. Respirology, 2017, 22(4):708-713. 作者简介 声明:
友情链接
联系我们