登录方式
方式一:
PC端网页:www.rccrc.cn
输入账号密码登录,可将此网址收藏并保存密码方便下次登录
方式二:
手机端网页:www.rccrc.cn
输入账号密码登录,可将此网址添加至手机桌面并保存密码方便下次登录
方式三:
【重症肺言】微信公众号
输入账号密码登录
注:账号具有唯一性,即同一个账号不能在两个地方同时登录。
作者:高景
单位:郑州大学第一附属医院呼吸与危重症医学科
1958—1961年,脊髓灰质炎后时代,ICU床位逐渐扩张,机械通气适应证扩大到其他原因导致的急性呼吸衰竭。机械通气基于Radford曲线,最早开发于全身麻醉及脊髓灰质炎患者模型。后来的叹气通气(Sigh)也是基于术后肺不张的患者模型而开发,用30~40 cmH2O充气的方法保持15 s。在当时,治疗肺不张和低氧血症主要通过增加潮气量和吸入氧浓度(FiO2),别无他法。
1967年,Ashbaugh等首次提出ARDS概念,并取代“充血性肺不张”"湿肺”等术语,并引入了呼气末正压(PEEP)。ARDS是多种原因导致的一组“异质性”疾病,也是临床中导致很多危重患者死亡的主要原因,死亡率高。其肺组织表现为不均质的实变,早期称为“婴儿肺”。在ARDS治疗过程中,机械通气具有举足轻重的地位,成为能否抢救成功的关键。
一、ARDS的定义及特征 在我们熟知的柏林定义中,ARDS是指急性病程、双肺影像学混浊不能完全用积液、肺不张或肿块来解释,有确定的危险因素,并且排除其并非完全由心脏原因所引起。根据氧合指数分为轻度、中度和重度。ARDS患者的死亡率随着疾病严重程度的增加而增加。
2023年ARDS的定义也进行了更新:无需气管插管患者,HFNO≥30 L/min或NIV/CPAP下PEEP≥5 cmH2O,存在低氧血症(PaO2/FiO2≤300 mmHg或SpO2/FiO2≤315 mmHg同时SpO2≤97%),双肺病变需要如下证实:胸片、CT或超声(需良好培训);在资源有限的环境下,不要求PEEP、吸氧流速和特殊呼吸支持设备。
二、呼吸机相关肺损伤 VILI的发生机制包括:①容量伤/压力伤:高容量通气可导致肺泡破裂、漏气和严重的气压伤。跨肺压是决定压力梯度的关键因素,Pplat是引起气压伤的决定因素。②剪切伤/不张伤:重复打开和关闭气道和萎陷的肺组织造成损伤,并影响肺表面活性物质及区域组织缺氧情况,诱发肺水肿。③生物伤:物理性因素可以直接或间接引起各种细胞内炎症因子释放,不仅直接损伤肺组织,还可导致全身炎症反应。④机械功率伤:机械功=Vt×P=Vt×[气道阻力×流速+Vt/(2×顺应性)+PEEPtot]。一旦启动,肺损伤可能会以指数方式增加。 三、ARDS之肺复张 2023年一项动物试验建立了轻度ALI大鼠模型,包括呼吸频率逐渐或急剧增加(即前述的肺复张策略),大于两个不同的适应组,通过尸检组织学评估肺泡损伤以及肺部炎症、内皮细胞损伤的标志物和相关基因表达。结果发现,呼吸频率逐渐增加可减轻肺损伤程度,急剧增加呼吸频率组的生物标志物水平更高,而肺复张则可使其水平降低。该研究结论是:在轻度ARDS大鼠模型实验中,与呼吸频率急剧增加相比,逐渐增加呼吸频率可减轻VILI程度。此外,肺复张策略可以防止呼吸频率急剧增加所造成的生物性损伤。 四、小结
不同研究存在异质性,ARDS患者肺复张仍然存在很大争议。复张前需评估肺组织的潜在复张能力。多项荟萃分析提示对ARDS患者实施肺复张对28 d病死率无明显改善,但部分研究提示肺复张可能改善患者的氧合指数,缩短住院时间,减少抢救药物的使用。肺复张对患者相对安全,因为研究发现肺复张患者气压伤和气胸的发生率并不高于非肺复张组。所以肺复张在ARDS患者中可以实施, 但需要注意个体化(合适的患者,合适的方式), 可以联合俯卧位, 实施过程中密切监测。未来需要更多临床研究来评估疗效。
参考文献 [1] Kallet RH. Mechanical Ventilation in ARDS: Quo Vadis?[J]. Respir Care, 2022, 67(6):730-749. [2] Liaqat A, Mason M, Foster BJ, et al. Evidence-Based Mechanical Ventilatory Strategies in ARDS[J]. J Clin Med, 2022, 11(2):319. [3] Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies[J]. Intensive Care Med, 2023, 49:727-759. [4] Gattinoni L, Mascheroni D, Torresin A, et al. Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study[J]. Intensive Care Med, 1986, 12(3):137-142. [5] Nash G, Blennerhassett JB, Pontoppidan H. Pulmonary lesions associated with oxygen therapy and artificial ventilation[J]. N Engl J Med, 1967, 276(7):368-374. [6] Suter PM, Fairley HB, Isenberg MD. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation[J]. Chest, 1978, 73(2):158-162. [7] Maunder RJ, Shuman WP, McHugh JW, et al. Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography[J]. JAMA, 1986, 255(18):2463-2465. [8] Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries[J]. JAMA, 2016, 23;315(8):788-800. [9] Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2007, 175(2):160-166. [10] Slutsky AS, Ranieri VM. Ventilator-induced lung injury[J]. N Engl J Med, 2013, 369(22):2126-2136. [11] Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome[J]. N Engl J Med, 200, 342(18):1301-1308. [12] Lachmann B. Open up the lung and keep the lung open[J]. Intensive Care Med, 1992, 18(6):319-321. [13] Liaqat A, Mason M, Foster BJ, et al. Evidence-Based Mechanical Ventilatory Strategies in ARDS[J]. J Clin Med, 2022, 11(2):319. [14] 马迎民, 罗祖金. 肺复张手法的临床实施[J]. 中华结核和呼吸杂志, 2016, 39(9):671-674. [15] Foti G, Cereda M, Sparacino ME, et al. Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients[J]. Intensive Care Med, 2000, 26(5):501-507. [16] Dyhr T, Bonde J, Larsson A. Lung recruitment manoeuvres are effective in regaining lung volume and oxygenation after open endotracheal suctioning in acute respiratory distress syndrome[J]. Crit Care, 2003, 7(1):55-62. [17] Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome[J]. N Engl J Med, 2006, 354(17):1775-1786. [18] Antonaglia V, Pascotto S, Simoni LD, et al. Effects of a sigh on the respiratory mechanical properties in ali patients[J]. J Clin Monit Comput, 2006, 20(4):243-249. [19] Girgis K, Hamed H, Khater Y, et al. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment[J]. Respir Care, 2006, 51(10):1132-1139. [20] Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 2008, 299(6):637-645. [21] Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 2008, 299(6):646-655. [22] Boriosi JP, Sapru A, Hanson JH, et al. Efficacy and safety of lung recruitment in pediatric patients with acute lung injury[J]. Pediatr Crit Care Med, 2011, 12(4):431-436. [23] Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial[J]. JAMA, 2017, 318(14):1335-1345. [24] Fernandez R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial[J]. Intensive Care Med, 2008, 34(8):1487-1491. [25] Costa Leme A, Hajjar LA, Volpe MS, et al. Effect of Intensive vs Moderate Alveolar Recruitment Strategies Added to Lung-Protective Ventilation on Postoperative Pulmonary Complications: A Randomized Clinical Trial[J]. JAMA, 2017, 317(14):1422-1432. [26] Pensier J, de Jong A, Hajjej Z, et al. Effect of lung recruitment maneuver on oxygenation, physiological parameters and mortality in acute respiratory distress syndrome patients: a systematic review and meta-analysis[J]. Intensive Care Med, 2019, 45(12):1691-1702. [27] Xavier PH, Fonseca ACF, Gonçalves LA, et al. Lung Injury Is Induced by Abrupt Increase in Respiratory Rate but Prevented by Recruitment Maneuver in Mild Acute Respiratory Distress Syndrome in Rats[J]. Anesthesiology, 2023, 138(4):420-435. 作者简介
友情链接
联系我们